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ALGORITHMIC EQUIVALENCE IN QUADRATIC PROGRAMMING I:

A LEAST-DISTANC E PROGRAMMING PROBLEM

Richard W. Cottle and Arthur Djang

ABSTRACT

It is den~nstrated that Wolfe’s algorithm for finding the point

of smallest Euclidean norm in a given convex polytope generates the same

sequence of feasible poirits as does the van de Panne-Whinston “symmetric”

algorithm applied to the associated quadratic programming problem. Further-

n~ re, it is shown how the latter algorithm may be simplified for 
application

to problems of this type.



1. Introduction

This is the t’ir~ of a ~~~ ~e uf r~ p~~~s h Lr~ m t  ~r ded tu

provide a conceptual b: .~ i~ ~~r the  a~i~i ly~;is and t: ‘rp ~ r~~~or o1~ ~~~~~~~~~~~~~ c

programming algori thms . The series ~~ i i : ~~d:rs ~. ~~ ie v~tr ~ e * y cr ~ C’

programming problems , ranging from those having ~ert .~~in ~pe~ i~~i ~t r  ~ f u r

\ such  as the one di~ c’2ssc~1 in this paper)  t o  r.or~ ~cnera 1 ~~~~

prob lems . With re~ ’:~~d to these prob ] ‘-‘m c , .he concept ci’ e- m . ~iv alence cc~ v

algorithms (in t h e  ~~~~~ of g er Le r a t i r :~ l i ien t ical  solution p c r h s )  is

examined. Apar t from their  theor uti cal interes t , the :esui’.s developed

in this series of papers should be of interest to those concerned with

finding computationally eff ic ient  methods for solv ing und r~ tic programricj

problems .

The i~east-Distance problem (LDP)

In 1il,12] Wolfe introduces ~n ~~~crithn for findirr; that hcint cf a

~:~ Ven Dr i ,’~~c r e  } ‘ i vj n ~ ~rna 1L~~~z~ E c c i i d e e n  nor’s . :‘L~-~ nrocicn under ‘.20!. —

: : 1 ~~!~ Lt . :C ’n ‘~i f f e r ’  Cro ’s 1east—d.ist’~nce problc~i c studied h’: ce r ta~ ri ctn .~r

‘u~~ or’: ~~~~ i’uc~:er [7 J ~ in that the giver: oc~~i ’~ope iS ic~ cribed is

~onv o:~ hull of given point set , rather t :ian as che intersect ion

:‘ h~~ ~‘‘rn ~‘c s

~fl c r ’ ~~~~~~~~~~ ~~ = ~~~~~~~~~~~~~ he ~ iv~ n : c ~ cf  d:st .H’t

a’ . : ’  so pc~~nt s  n ~~~~
‘
. f t e  lea s t — d i s t ’~n ~e p rh 1 e~ LDP ) can be s t i ~ i~d a:; :

—~~~~ -~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~- -~~~~~~~~~~~~ 
___ _ ..~~~J_~._~_ _



! minimize lx II ’ X
1
X

to
F sutr~ect to P w~

k=l~~~~
in
L w = 1, all w. > 0

k=l k I c —

As Wolfe [10] points out, problems of this t~~e arise in applica-

tions such as the minimization of nondi fferentiable functions and pattern

recognition. For problems in which m < n, Wolfe [11 ,12] recommends the

use of the “tableau variant” of his LDP algorithm. For problems with

m .r> n, he suggests the use of other variants of the method; they follow

the same path geometrically but organize the calculations in a more

efficient manner.

Outline of the paper

Section 2 of the paper provides a brief description of Wolfe ’s

LDP algorithm it also discusses the “symmetric ” ~uadra~ic programming

algorithm of van de Panne and Whinston [81 as special ized to ‘he LDF .

For brevity, the latter method will be referred to as the ‘S-’il~orithrn .”

Section 3 shows that the structure of the LDP permits considerable

simplification of the S-algorithm. It also examines the special structure

of the tableaux generated by this algorithm and demonstrates that the ~DI~

may be solved using principal pivots exclusively. Finally, the seccion

includes a geometrical interpretation of the tableaux elements which

is based on Wolfe ’s [11] analysis of the “tableau variant” of his LDP

algorithm.

2



Section J~ demcnstrauo : ‘h i m  I ce L — : :  ‘a ’s lhn ~ -~r I ‘ ito ’s 1~’ ~,hmn

generate the same sc u r n  ~ ot ~~ s ~Lle ‘a~ntc ~~um . ‘ani ‘~~ to ‘ . ‘

E~irthermore, the ~—algcri hot  nd W ol fe ’ s ‘ ‘~~l’- -ui van j 11:” ‘c na ‘:- the

same sequence of tuhleac.~. , pro-.’ lieu hat I on i n tr-  “ ~o i .’; t ’i

produced during the so— 2 ’ t lj O d  minor  cycles of ecr ’~ ‘re Amed ‘ r n

from consideration . flixmce the two mean uds purl’ormr . ‘in e u~.v ‘Lana ‘c:a au._

of’ work in each minor ‘cycie , we ~ u 2’lu~~’ chat th~ h ’ ri  ‘0 the

“taoleau variant” of hutfo ’s ILl algorithm are e,uhtuien~, eras cf  ‘h o

computational effort r’’,uired to sobe the t ilL-- .

The appendix of the paper is devoted to a discussior . of degeneracy

in thm’ tDi , and to a summary of von Hohenbalken ’s metLcocl [)] for maximizing

pseudoconcave function:; on ‘aolytopes. When applied La he L~P. this method

is ijont.ical to Wolf’e’c algorithm0

2. ~~~~ f t umma~~~ of th ej lgn rif .bm .c

a. Wolfe ’s LDP algorithm. Initially, Wolfe 111] expresses his

a t~ ori chits for the LDP ii: ceoymetri c’ 1 -ni ~uoLe . La’ a C ’ .  he pu~ the ;irokh ens

in a tabular format and hrem tlfes the ueor:eti a ~ rri ficar1ce ot the

‘~~r;loau entries. 
‘or the convenience of t u e  rcah’cu. we review the

ations and Let’rs~ ri: r l u ~ ed in  [11)

Let I) tenote a set of k cri’jmn 70.2’ cr5  pH a i l s  ) rn U c J  ~aea.2

, — : a r : o , It wil l  f m H l ~ tn te  our ~j5’Ut :2LCl , t.C assur’.:Je h i s  cet ~f

as arm n ~ k t -~ r~ also den oh •~~ . “h~ ?fn - ‘~a 1l of’ (~~,

~ho se ’.

-p -
~~~ .--~~~~~~~~~~~ :‘ ~~~~

-
~~

-- -  ,
~~~



-—- ‘
~~~

- ‘ —-- - -
~~~~~~ : ‘ii.,’

A ( Q~ = fX E E’~:X il~~, e
r
w 1)

where e
T .= ~l,...,l) E Ek , ~

T = (wl,...,wk) E Ek. The convex hull of Q.

is the set

C~ Q) = (X € E’~:X ~~i , e
”
~
’
w = 1, w > 0)

The set Q is affinely independent if q € A(Q,\ [q)) is false fo r all

q E c. (Note that the backward slash represents set-theoretic difference

and [q) is the set with one element : q.) A point X E EXt \ [0)
determines a h~~erplane

H(X) = ~ ~ E~~Y~X = xTx1

passing through X and normal to the line OX. The notation 0/H/S

means that the ~ rperplane H separates the set S from the origin 0,

while the notation 0/S/H means that the set S lies on the near side

of the hyperplane II. (Wolfe does not ase these notations, but he does

use the concepts they represent.) An affinely independent subset ~

of P (the given set of k points) is a corral if the point of least

norm in c(Q) belongs to the relative interior of C(Q). By convention ,

a singleton is a corral.

Wolfe’ s algorithm consists of a finite number of majpr cycles,

each of which consists of a finite number of minor cycles. In the first

two flow charts below the major cycles begin at step (1); the minor



r 
~~~~~ ~~~~~~~~~~~~~~~

‘ —‘——

~~~~

-

~~~~

-

~~

cycles consist of st eps  ~2 )  ~tr i~ ( 3 ) .  At the beginning of ea ch major cycle,

a .u orra ’i Q, and the point X E C ( Q i  of least norm are known . ~t sriould

be noted that the solution to the  problem Laa: t t : i  s f ort tt~ r Son:e Cor ral  :~
‘ .

The proof th at  the algori thm terminates Is a s~~tu ’h on a f te r

f ini te ly  many steps is b~ sc-h upon the following facts:

1. Q is always a fh’ioel y indepen dent ; i t  cilmari g ’-~ onl :1 f~j ’:h~ deletion ot’

sing le points or by the act ,i .rr:cticn of P~ P in st e p  ( 1) .

2. The number of minor cycles (if any) with a sln~ l” major cycle is at

most the dimension of c(Q).

3. The value of the object ive funct ion  X~ X is re iu :~ed in each major

cycle .

~. ho cor ral can ent.er the algorithm more than once a~ the point X is

i:ni qi.ie ly determined by the corral m and by the previous fact , xTx

; - - -~-esses from m e  major cycle to the next).

The ‘:ah leau cur ran t c- f  vmol fo ‘s aigilr~ t:hrr, ~see i’lcwci a:-’ 2) has

l i i e  f’~l]owing properties :

c a .~ in the Otet Lus ediatel ,’ following the c’ptimslir~; test , the point F,

ad ‘ n cr : t i or :  tc Q is th a t tTh ~~cl ‘1 a b izes T
E from “JoO it; t L QS c

~rh a s  I’ . for which Cl P./H (,~

(b) hue step which tir~ds the p o i n t  of minim ums norm in A m L ~ see scen ‘2 )

l u  accomplished by a p r i r Hp ’ tl p ivo t .

)

;_ _

_~



‘ ‘  ‘~~~~~~ ‘ ‘ ~~ 
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— --
~~~ -~~~~~~~~~~ ,~~~~~ ,

b. The van de Panne-Whinston S-algorithm (specialized to the LDP)

We apply the S-algorithm to the following convex quadratic

programming problem, which is equivalent to the LDP:

1 T Tminimize w P Pw

subject to eTw = 1
w > 0

The Kuhn-Tucker conditions in tableau form are :

y~ 1

-e o

w,~. eT 0 -l

with y1 > 0, WI > 0, y~w1 = 0, w,~. = 0, and y,~ 
free. Associated with

the above initial tableau are index sets I = ( l ,2 , . . . ,m) and J = (m+l) .
I is the set of indices of the basic dual variables, and J is the set

of indices of the basic primal variables. As the algorithm progresses,

the sets I and J will change.

The S-algorithm generates a sequence of adjacent basic solutions

of the Kuhn-Tucker equations via pivot operations , each denoted (B.V . , D .V . ) .

The D.V. (“driving variable”) is a nonbasic variable whose value is being

*increased ; it is chosen to be the complement of the most negative basic

Note: The variable w~ is said to be the complement of the variable y~.

In this paper, a tableau will be termed “complementary” if ~~~~ = 0
for all 1, 1 < I < m+l. Otherwise, if ~~~ > 0 for some i, the tableau

is said to be “non-complementary.

”6
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d ial variable (the “dis ’ . inu ~~is m mod vain :d in ” ) .

The h.V. (“ t1oc:kin~ ‘rariahle ’ ) is a h’t~ i : vari uhie whose value

‘i aime r  decreases to zero (if the B.V .  i :apper ~s m o  be one of the basic

pr ’ r:mal variables~ or in cser tses  to zero ( i f  the i~. t .  u ’ rop eri s to he the

‘i loHoguished vari ’i H .~
) as a result of the in c r e a s e  in the I V . ,  and hence

I von the  basis. basic dual variables other than the distinguished

variable are uo~ el igible to play the role of b . ’v .  ~ha pivot crerut ion

nouuH sas  of solvir 1, t h e  t c :uat i ons for the nev set of bus i c  a u r ia s l e s .

Start inn from the ir i it ~ ’el tableau , the S-r ]auori ’ hm performs an

or 2 ~ 2 principal block pivot . This yields a primal

feasible  point whi ch  is a member of the set P = ,...,2 )  having

;r :rrm :ml norm.

Denote a typical tableau Tk generated by the  S-algorithm (af ter

‘ ‘ i ’  i ’ ’t i a li z a t i on  step ) as:

1

‘I’
‘ ‘-L I

Wa, 
- 

q ,

n ’a chat  here the set J is not n ece csmnill~ a singleton (as it was in

t~ ‘.1 tableau

h m r e e  ~y’pcs of pIVOt operat L O SS can be performed , each of which

alit ensure that each su.2cessive tableau m .2er:OIri.ia ly  dAle re ’ Lcd noasas se s

ho following proper i j e t : :

7

~~~~~~~~~~-—  _____________________________ _ _ _ _ _ _ _ _ _ _ _



( i)  Bisynmmetry : After the pivot , the new tableau is of the following

form , where M1,1, and ~~~~~ are symmetr ic:

w1, y~ , 1

M1,1, 
~~~~~~~

w 1, ~~~~

(2 ) Posi t ive semidefiniteness of the matr ix ~~~~~ (and also of the

matrix H1,1, in the case of convex quadratic programming) .

(.~) Primal feasibility: ~~ > 0

The S-algorithm terminates when , in addition to these properties, the

tableau is also dual feasible: = q1, > 0.

The following types of pivot operations may be performed :

(a) IN-PIVO T (y
~

,w.t ) where t E I.

This l x i  principal pivot increases #J , the number of basic primal

variables, by one.

(b) OUT-PIVO T (W , Y)  where s s

This lxl principal pivot decreases #J by one.

(c) EXCHANGE—PIVOT (w5,wt) ~~t’~ 5~ ’ ~ 
€ ~ S € , .2~~

In this 2 “- 2 block principal pivot , the number of basic prima l

variables remains the same. The operation is performed by making

two lxi non-principal pivots. As will be shown, this type of pi vot

is not renuired when the algorithm is applied to the LDP. Jn fact ,

even the initialization step, which is nominally accomplished by an

exchange-pivot, may be carried out using lx l  principal pivots only.)

~~~- -- --~~-~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
-‘-

~ --  - -. ,~~~. 
~--~~p-.--- -~~--



Convergen ce of t~~O A — i lu ’or ~~~ fu r  ~‘om Ve x auad ~ at is prcnrumsrulna

problems is est ‘I l i s he d  In  the fol lowing manner t J l r m  A’ l a m i n e  e r A

“fhir:nton [8]).

If some t ’ a r i r  dual v ar i ab l e  ~t € I )  i,n the  cur r em: ’. comple-

mentary tableau is retative . the t - i ’cleau does riot represent a minimum .

The c~~ p1ement of y~ , namely w~ is a nonbasie primal variable whose

value is then i n  :‘i’ed ’sed. Tr:e of the ai ree tyeus of p ivo t  operd t~ ma nS will

be performed.

if the pi r’cm: it ci’ typ e (a) or ( c) , we get a new primal feasible

complementary solut ion , for which f ( w )  = ~‘r~T~~ x~x has reduced value.

e~qever if the pivot is of type (tb ) j,an out-pivot (w , y )  where s € ~ ) ,

the driving variable w~ will ‘be nonbasic in the new tableau, but will

u ,a-’e positive value--the value at which its increase was blocked by w

e : r e as i n g  to zero. Thus the new tableau is “non-complementary” in the

r eu se  that the variables w~ and y~ both have nonzero values. Howeve r ,

~:e”~ ~an ~nly be m such pivots of type I b )  in successicn , sin ce each

ta P red LiSCS the cardinality of 1 (denoted by ~ J )  h’,r one , and

° A < m. Eventually ; the algorithm must generate a new complementary

relation , thus c omplet ing a “major  cycle” ; the value of f~w) is then

: t ri at l y lower than it s value at the beginning of the major c~ ciC.

Assuming that each basic solution is nondegenerate, we can assert

~L t  sinc e  there exist a finite number of somplemeni ary bases , and s ince

in each major  cycle the a n n e  of f d w )  is reduced , no basis sun repeat--

cus e the algorithm wi 11 te~~~in -u t e  wi th the s o lu t i o n  in -~ f in i t e  number

of ateps. (Appendix of’ this paper demonstrates that th e  assumption of



__ _______  _ _ _ _ _ _ _ _ _ _ _ _ _  - 
- ‘ - - - -—‘

~~~~~ I

nondegeneracy can actually be dropped fu r  the pU rp’.’S ’: ~ f’ prov ing ‘ ha’

the n-m~lgorithm wi l l  cunv er gr ’ to the solut ion ef the LDP .

c. :low charts  of the algorithms.  To f ac i l it at e  future reference

and discussion we have represented Wolfe ’ s JAIF algorithm and the van de

asine-Wiiinston C-algorithm in flowchart form . Wolfe ’ s ‘algorithm has been

given in both geomesri c  and algebraic (tableau ) A rms .

ft  is hoped that the reader wil l  no t ice  the fti ow cimdl r t s  have pre-

“isely the same structure . This property warrants a comment . The

van de Panne-Whinston symmetric algorithm for convex quadratic programming

in volves tj ~~ use uf ’ lxl diagonal p :vots and 2 x 2 block diagonal pivots.

re sf he a ’on d ributions of this paper is a demonstration that only

d i’u ’n ,al p iv o t s  are necessary when the van de Panne-Whinston S-algorithm

is speciali zed to the LDP problem. This fact is already incorporated

i r the corresponding flowchart and is indicated there by the comment in

A~e lower r ight-i und corner of the page. To a great. extent , it accounts

for the :iuplica ’.ion of the flowchart structures. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
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GEOMETRIC FORM OF WOLF ia ’ C Lee ALCx~hIi~~

INI TIALIZATION _____________________ __________

(o F i nn  a point P . a F of ra~ n 1uai n orm. 
-__________

Let X be that p o i n t  a n t  = (‘~f ’ .

START MA JOR CYCLE ‘,iith a corral Q ann a point  K & (t tf ) of
min imal norm

OPTIMALITY TEST 
____________ ________

(i If X = 0 or 0, ’H(X ’l/ P , st’cn: K is optimal .

Othe~~ ise choose P. such that O/P . I h X ) an~ ‘ ec ju in  P . to Q.

I
(2)  Find Y, the point of smallest norm in A(Q’ .

This is done by solving the system

Jp T~y + e \ = o

1.. e’ry = 1

and setting Y = Qy.

FEASIBILITY 

<<e1i n t C
~> 

Yes Rep lace X 
_ _ _

Find  Z , the point nearest to Y on the

l ine se~ nent C(Q ’ ‘1 KY.

D e l e t e  f rom (~, one of the point s not on

the face of C (Q) in which Z lies.

-~eplace X by 1 .

11

_ _ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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TABLEAU VARIANT OF WOLFE’ S LDP ALGORITHM [
Start with the (m+l~ v (m+l) tableau T° = 0 e

e P P

Number the rows and columns [O ,1,...,m .

INITIALIZATION

0
(o) Let i = i minimize T (i , i) for i > ~~~.

3et J = [i) and let w be the vector in E~ such that

— 1 for i = i
W . - \

~‘ 0 otherwise

Pivot in T° on (i , i ’~ and then on (0 ,0 ) ,  obtaining T.

START MAJOR CYCLE with an index set J, vector w, and tableau T.

Let ‘R

OPTIMMJITY TEST ____________________________
(Li If T(0,i) < 0 for all i ~ I~~ stop: X = Pw is optimal.

Otherwise, choose ~ ~ ‘K 
such that T(O,i) is maximal.

Replace J by J U (i).

(2 )  [ Pivo t in T on

H Let y be the rn-vector: = 
T(O , j )  fo r j C J

for d L I R

FEASIBILITY ~~~~~~~~~~for all Set w = ____

Let ~ = mm : w. - y .  > 0
I_ wj

_y
j  3 3

Let i be an index for which this minimum is attained.

Replace w by (l_t~1 w + ~y.

Replace J by J1!(j)•

1.

___________________________________ 
_ _ _ _  

_ _ _
-
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VAN DE PAN 1~E-WHINL2,UN S-ALGORITHM SPECIALIZED TO THE LOP

Start with  the tableau W
I 

y ,~. 1

En i t ially , i = ~i m y1 1~T~ -e o 2enotc tl,e constant
= T column of a , and the

and J = (m+l1 . w 1 e (I -l
ser f of the tableau

by ~~~.

INITIALIZATION
(0 1 Let i ‘denote the index of the smallest element of the main diagonal

~
EXCHANGE-PIVOT (W rn+i~~

W
~ 

) (y,~,y ÷1)

START MAJOR CYCLE . The var iables  ~~~~ > C , j a J , ant  w. = 0, i ~ I ,

are the barycentric coordinates of~the cu r rent feasible point X

with respect to P.

OPTIMALITY TEST 
_________________________

Let = mm (q1). If q~ >0, stop: X = Pw is optimal.
iC~

Otherwise, increase the driving variable w,~.

I
Patio test: Find s A J such that q/m~~ = max

If mt,~ 
> 0, compare the values of q/m~~ and

~Aor the LDP, we always have ~~~ > 0 ; see Theorem i .~~. )

FEASIBILITY 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ the index

q /mtt > ~s/~~ t 
? ‘  b from I to J.

w blocks the increase of w . Note : If m = 0,
S t Sr

If m >0, perform the the excln~n~;e-p ivotSS w
5

, ‘‘~~1~ “Y~ •Y ,~
OUT-PIVOT Kw •~~ 

)
- S ntis  be perform ed .

- However , for the LDP• Transfer the ineex s from J to I.
we will always have

Continue the increase of the driving ~‘~~~> 0 (see

variable w~. Theorem

1

i:~

~~~~~~~~- 

- - ‘ - ____ — — — ‘

-— - ~~~~~~~~~~~~~~~
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Flxample of ‘in LD? Problem (due to Wolfe [ i l i )

Problem: minimize xTx
5 5

subjec t to X 
~ 
P
k
W
k
, ~ = 1, Wk > 0

k=l k=l

1 0 5 -2
where P [P 1 P2 ~~~ = L 2 0 1

The S-algorithm , applied to this problem~ generates the following sequence

of tableaux

w1 w2 w
3 

y14, 1 The initial point having barycentric

ii. 0 2 ~i 0 coordinates w = (o ,o ,o) with respect

y,~ 0 9 -
~~~ -l 0 to P is not feasible since

2 -6 5 -i o eTw ~ 1. Apply initialization step.

w1~, 1 1 1 0 -l

INITIALIZE : EXCHA.NGE-PIVOT (w~,w1
’, (y1,y 14)

w2 
w
3 

w~ y1 1 Tableau corresponds to the primal

y2 13 -
~~ -~~ 1 ~~~~ feasible vertex P1 having bary-

-
~~ 5 -2 1 -2 

centric coordinates w (1,0 ,0) .

L~. -2 ~ -l 
Increase w

2, 
since y

2 
is

w,1 
-l -l 1 distinguished.

L IN-PIVOT c’y2
,w
2)

114



w
3 

w14 y
1 .1 . )  i

[ ~~~~ ~;
“) —~~~~~

‘

~

“ liT -
~ 

— 1’t ’ ‘ ‘ . 1 ‘ ~~A ’ ~ ’ t 1 ’ u 5 U u n O .~ tO ~i’ -c

Y ~s C P w ‘ ‘,) / , l ’ ~~~ l~ ,O~
‘
~ 1 -— 

-~ :/ , ~5 s ti ! I t i h f d ,

a’ —l ’( 9 1 —1,
1 an •a,~’ ucr ) i~ “ a I c  1 0 h •v ’e’e~,

14 i~ -l 14
___________ — i~, --~ , w 1 hi

Li:±’: ~~~
w ~ w y 1 .~~,
1 5 e 2 u~ ‘-cr t e e  o u t — p :  vot , w~~, t n o u n .

~~~~~~~~ 
-~~~ 1 --~ :~~~tara c, l a s  the value 9j1?

17 21 -l~ 1 -15 at wt 1’ ~. its increase was
= 

~~~~
‘ -i;~ 9 -l 9 Ploched in the previous tableau).

—l -1 1 0 1 h ence tA-~is earjleau ccrrezpctds

to aPe point S with

w = A) .  Is, 17, 9, i ’). toi tinue
IN-PIVOT

‘Ic !cre’- se sf w~ .

W
i 

w14 •
~~~~ 

y
5 

1

__________ _________ ____- 
‘
~~,se y. > ‘I for i E I,

li~9 21 9 l~ 21
- err m ate w,th tableau

i 
21 9 -11 -15 9

- __________ __________ cer €50 s t ag  t~~ ‘-he solo ’ I a n

-9 11 1 —1 11
2. , i v f ~~e w = A~-n ll~ 2 ’ .

—17 15 —l 1 15

Wolfe’s LDP algorithm,applied to the ~ame trob iern . generates the following

e ’;~~ence of points:
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Point Coordinatet~ of’ X Barycerttri - coordinates w of

K i n  E2 Value of X~X K with respect to P

P
1 ( o, 2 14 ( 1, 0, 0)

R ( 12 l2~ ~6 ; 
~i~’ i~ is ~T3’ 17’

O (

~~

‘ 

~~ 117 

(3 ~
S ( 

~~~~~~~~~~

3 1 5  9 11 15)r ~~~~~~, ~7
) ( ~ r6’

P
S

1€-

~~~~~~~~ :- .~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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5. Analysis of the 2— ~Lçoia t iu r  aj)~~ ted t , ,  L1~ c LOP

a. Initialization

This section examines the str ’sr~ -Le - 1 - s-f thc swl,eau obtained by the

initialization step of the S-algorithm. The tableau is shown t a  correspond

to a point of P having ‘oi.nieetm norm . tu ur~er to develop these results,

we need to introduce the following conceot.

Consider a sinean system of’ t a  fusi ’. w II’ . +

Definition. The tableau c” r e se nt ir ~; the system is sai d to possess the

duplicate column property with respect to the variable z. if it can

be rearranged into the form:

z. z 1

w~~~~~~~~~~~
)
~~~~~~~J o ]

Lemma 3.0. Consider any tableau having the duplicate column property 

r ’  ect to :.. AssuL e that come nonsingular submatrix of M exists,
-‘ 1

- ,d Ch id-. a block pivot is performed on this submatrix . Then the resulting

a~~tieau also has the duplicate column property with respect to the

iable z~.

:~~~f :  The result fo t l ws immediately upon par t i t ioncng  the matrix M

a n J  the -,‘ u st or s  w and z in an a~,oresrintc manner an-I performing the

block pivot . I

1

-. — ‘ --‘- : -=
~~~~~~

- • 
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‘fe now examine the S-algorithm as ~pp l i ed  t o ‘he 1,1 *:

1 ‘~~Tminimize w~P i~

subject to e
rw 1 , w > 0

The initial tableau is as shown in Section 2b of this paper. Pecall

that the variable w is defined by w = w. - 1, and that I is
m’-l m-~-l i=l 1

the index of the smallest element on the diagonal of P5P. ~The S-algorithm

resolves ties for the choice of this index arbitrarily.) The following

result describes the effect of the initialization step.

Proposition 3.1. Assume that the S-algorithm is applied to the LDP.

(i) As a result of the initial exchange-pivot (w 
÷~~

, w,”~, (y~ , Yin in

€ i), a tableau is obtained which has the duplicate column

property with respect to W
~~ +,i

.

(2 )  This tableau corresponds to a point P . of P having minimum norm.

L~
) All subsequent tableaux generated by the S-algorithm also possess

the duplicate coiuinn - property with respect to Wmf1~ 
The variable ,

Wm4,l~ 
having le ft- the basis in the initialization step . never returns.

~~~~~~~
=“- 

~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ 
-

~~
~‘



i -r oof :  The star ’ iu~ i,ar le tu , T°, is’:

W
i ~~~~~ 

1

T- 1 Q
“1 “11 1

y A1 ~22 
-e 0

w 1 e1’ 0 -lm~- 1

Assume that m11 
is the smallest d esert , on the n-sin diagonal of

F°’ll h”C~
Phi- P IL M,

The initialization step calls for an exchange-pivot (w f1,
w
1
), KYl~

Ym+l
)
~

which is of course equivalent to a block principal pivot on the nonsingular

snJj ma t r ix

[ m il 

:
~~~~

f~s a result of this pivot, a new tableau, T
1
, is obtained. It is easily

sertfied that this tableau has the duplicate column property with respect

to w~~1. Furthermore, it corresponds to a primal feasible point P1
having coordinates w = (w ,w,~, . .. , w ) = (l ,o, . . . , o) with respect to thel~~~ m

:t’ t t , P. By our choice of it follows that P, is a point of P

of ’ minimum norm. Since P1 is feasible, the initialization step of the

algorithm has been completed. (In the more general case of convex

quadratic programming, the S-algorithm may require not one but several

exchange-pivots to locate a primal feasible point.)

lb 

‘-‘-~~~~~—- - -  -~~~~~~~~~~~~~~ rn—- ~~,,-~~~~ -----~~~ ~~~~~~~~
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Starting from tableau Ti’, the S-algorithm will perform a sequence

of pri ncipal pivots . Lemma .5.0 implies that all subsenuent. tableaux

generated by the S-algorithm will have the duplicate colour, property with

respect to w~÷1. Of course, this holds true only if the variable

never becomes basic after the initialization.

To show that the latter condition is satisfied, observe that

any tableau generated by the S-algorithm corresponds to a primal feasible

point (i.e., w > 0, and 
~~~l 

w. = 1). Hence in each such tableau, we

must have wm÷l = w~, - 1 = 0. By definition of the vector y,

T . . .  ‘ . . .eym÷l = P Pw - y. Applying the conditions of primal feasibility and

complementarity,

~m+l 
= (w

T
e)y ÷1 = w

TpT~~ - wTy = ~
TpT~~ = xTx > 0

We conclude that, in any tableau generated by the S-algorithm, 
~m+l

must be basic and its complement w 41 must be nonbasic. I

Remarks.

1. The initializing block pivot on

1~ ~L l  o j

may be interpreted as a restriction of the quadratic form to the

linear manifold determined by the constraints y1 = 0 and wm÷l = 0

(i.e. e
Tw 1). This yields a primal feasible basic solution with w1 > 0.

Note. A similar argument is employed for the case sI ‘ nonoomplementary”
tableaux .

20
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2. The wmfl
_row and the y ~1

-columri ~,re hut for i si~~r i ‘hc:tre ) preci sei11

the “0—row” and “0—column ” denur’ i bed in Lo1~”-~’s s~ atesien ’, of his

algorithm [ l i i .  Wolfe points ou s tha t ‘race ha v i r r ’  bean pivoted ir. ,

the [0th row and column ] are not used again for p . ‘.‘ uS choices . ”

3. In proceedi n g from T° to F1, the pivot ce sconc e

could also have been used, since 5111 > 0 and since

the appropriate pivot element of the intermadiate tableau will be

positive . This corresponds to the pivot sequence employed in Wolfe ’s

method.

b. Structure of the tableaux generated by the S-algorithm

The main result of this section is a demonstration that when applied

to the LDP, the S-algorithm performs only 1 v I principal pivots; no

“ exchange-pivots” are necessary . This result is based on certain algebraic

o”uperties of tableaux under principal pivot operations, some of which are

reviewed below.

Definition. Given any sauare matrix M, the nullity of M is defined by

n(M) order M - rank M

Now consider the homogeneous linear system represented by the tableau~

W
I yJ

I--—-—-

‘TI U

~q , L_~
1 L A

211
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The following result, due to Keller, shows that the nullities of the

blocks and ~~~ are i nvariant under principal transformations

(-i .e., sequences of principal pivots and principal rearrangements).

Theorem 3.2 (Keller [~~1, p . b21 ’t. Suppose that a principal transformation

is performed on the tableau shown above. Let the new tahleua resulting

from this transformation be represente i as:

WI,

~~: ‘
~~~

‘

Then n(M1,11 ) = n(aL
11
)

and

U U ,J ,J

Now , suppose that the S-algori thm i s  app lied to the LDP. The

orig inal tableau , T°, may be wri t ten:

w . . . w 1
1 m

( yl 0

I -e

~ 
0 

— ___

‘~0

~ 

_ _ _ _



-,—~ .- .~~.-~~~--~~~~~~ ‘— -~~~~~~~~ , ,- -  ‘. , “ ~~~~- - -~~~—- -- --~ - - - ~~“ — - ~~- - - --——-‘-— ‘---------------- -— -—- -  - - . - - -~

Associated with this initial tableau are index sets 1 , (1,2,. .. ,m)

and J
0 

= (m 4- 1) . Let

-e

M°= Te 0

Observe that = 0. rank(M00 
~ 

0, and ]fLi~ = 1. It follows that
Jj  J J

n(M00 
) 1. Similarly , we have :100 = rank = rank ~~~ = rank P ,

jJO I I  I I

and #Io 
= in. Hence n (M

0
0 0

) = m - rank P. These observations enable us to

prove the following result.

Corollary 3.2.1. Let Tableau T° be the initial tableau for the LDP.

Let Tk be any subsequent tableau generated by the S-algorithm, and suppose

it is represented as:

W
I y~ 1

[~~
I M1~

w~ M~1 ~~~ q
~

Then Tableau T
k 

has the following properties:

(i) The matrix

~vE Mj,I IJ

M~1 ~~~

23 

I..T .~ ~~~~~~~~~~~~~~~~~~~~~~ 
‘ . .- ‘-

~ ‘
- -., ‘~“- -

~~~.—~~~~~~~~~~ . ~-— . ~- . .  _ _ _ _ _  1



is bisymmetric , i.e. the blocks and are symmetric, and

M1~ 
= -M~1. Furthermore, M

k 
is positive semidefinite.

(2) nullity (M~~) = 1

(3) ~J = rank ~~~ + 1

(2~ det ~~~ = 0

(5) M,~ . is symmetric and positive semidefinite

(6) If ,~J = 1, then = 0 (scalar).

Pro of:

(1~ The matrix is a principal transform of the original matrix

i.e. it is obtained from by a sequence of principal pivots and principal

rearrangements. Observe that is a bisymmetric matrix and that it is

positive semidefinite since ~~~~ is. By results of Cottle and Dantzig [2]

and Tucker and Wolfe (cited in Parsons [El) , the properties of positive

semidefiniteness and b isymmetry are preserved under principal t ransformat ions .

(2) In the initial tableau T°, we have n~M°0 ~ 
= 1. By Theorem 3.2,

= 1.

(3) fly the definition of nullity and the fact that n~~:.~~) = 1, we must

have ~J = rank 1.

~~
) By part ~3), rank = order ~~ - 1. Hence M . is singular and

de~’ Mjj  (1.. 

~~~~~~- - - -- , .- ‘ --,‘— —~~~-- -~~~~~~‘ — “
~~~~~~—~~~~~~ .- - -—-.- --~~~ - ‘— .~~~~—— —~~— - --



(5) This follows from the fact that is a principal submatrix of

the bisymmetric and positive semidefinite mat r i x

(6) If ~%J = 1, we must have rank !A13, = 0 by part (5) above. Since

the order of ~~~ is 1, it follows that M13. = 0.

The following l emma and Corollaries describe the structure of

the tableaux in ~hrerter 
detail.

Lemma 3.3. Let

P’h~ -
~ 

“\ ,/
‘ M11 ~1,2 

113

M ~~R -e = fI
hi ~22 ‘1f~R

~~ e~ 0 ‘32 “33

where ~ and e are both column vectors of l’s, though possibly of

different dimensions. Suppose

:) =(: 
~
‘)

is nonsingular . Let

C 

Cl
11 ‘if’ ‘ 13

M21 M22 ‘1- ~

H31 ~~~

he the principal t,ransfo~~ of II  obtained f ran a block pivot on ~. Le sub-

m ’~t r i x N.  Then

25



( 1) e’h’i 
~

T- T(i. -’’ e M 9

/ T-
~3) e M , 5 = 1 .

Proof. We have

0- :X:~ ~:) (:1 :)

Therefore:

~
) Q~ 0 L ~ 2~~~ eM,~~~= I

(~
) ~~~ M

23 
- eM~ 7 = 0

() e
T
~~~~~+ o~~~o = o ~

h

(7 ) e
T 

~ 
~ 0 N~~ = 1.

I - u a t~ ons i~ and (7) are ,~ust (2) and (s). To veri~~r (i~ , we compute:

Ci)= 
<

~~~

2 ~~~~

)(t

~~~

) 
= ~~

ram (2~ and ~~~ we ~ave

e~~~~1 
= - (e T

~~~~Q,
L P )  ~~~~~~~ =

which is (i).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Corollary 3.3.1. Let the tableau Tk be obtained from the initial tableau

by a principal transformation. Suppose that Tk is written ~s:

w w , y ,
TR 

m l

H 
. L

~ 
) ‘R ~R

’R 
,
1~,
m+l .1.

) ,-~ ,~T
L ~m+1 f~ ,m+l 

‘‘:n~l,rn+1 ,c f l

J w~ 
~ 

1J ,mf 1 
H

,1~ ‘ 
, r’~ 1

where the index set is defined as = INjn+il, #I
R 

= r, ~ii~ = r+i,

and #J = 2 = m-r. Let e ~
- (1 1 1)T E

2 
and ~ (1 1 1)T -b Er.

Then the following properties hold:

T
(1) e M~~1 = — e

(2) e
Tl91jJ =

T = 1.(3) e

Proof: The initial tableau hL~ may he written :

W
1 

W~~ 
~m~l 

1

-~ C
B

Q
T~ T

Q -e 0

Tw e e 0 -1m-~- 1

where = (1,1 ,... ,rl , A = (r4’l, rid- , . . .  , m ) ,  B ~~~ f’

and Q ‘- [P p . . .  p ].r 4-1 . r+2 rn
27
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~~

-

To obtain laoleuu ,rk, a blast pivo t on ‘be a.- -

-e

~~ e
i- 0

must be performed. ‘he r emn .ii r’d r~ cci. t h a w s  H I ‘c~ -~ f’j f rom l emma 3.3 .

The following result is a s~. - e c i n ~ ca se at the preceding Corollary.

Corollary 3.3.2. Suppose tha r  some taulsac Is~
’ generated by the S—algorithm

possesses the property that ~J 1. Then the tableau must have the follow-

ing structure:

- 
W

1 
w~~1 

y,~ 1

I 
1P’R 

Mi m+i e

1 ~n~~l M
~~~m+i 

Mm+i m+i 
-l Mm+i m+i

T
J t w

J -0 1 0 1

Proof: In this case ~I = m, ~~ = rn—i, and cJ = 1. Therefore, using the

notation introduced previously, we toust have m = r+l, and 2 = m-r = 1.
Hence the vector e is ,~ust the scalar 1. The result follows im mediately

from CoroLlary f ..3.l. I

Corollary ~~~~ In. the above situation (i.e. when ~~r~leao T has the

property that iJ — 1), if the current coicti a X = 1 w is not optimal,

then the next pivot to be ‘~‘xecuted by the f’-algorithm must be either an in-

pivot or an exchange-pivot.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _



Proof, Suppose on the contrary that an out-pivot were to be performed.

In the resulti ng tableau , it will hold that /AY = 0, and hence w1 = w2

= ... = w = 0. However, we also have w = w. - 1 = 0, ain m+l i=l i

contradiction. I

Corollary 3•3•l.~ Starting from a tableau having ~J > 1, at most #J - 1

consecutive out-pivots can be executer~ by the S-algorithm.

Proofs Follows from Corollary 3.14.3 and the fact that each out-pivot

decreases ~J by one. I

The following observation on positive semidefinite matrices is

found in a paper by Cottle [1]:

Lemma 3•14~ If M is a symmetric and positive semidefinite matrix and if

m. = 0 for some k. then m . = in,. . = 0 for all i �‘ k.
icic ik ~ i

The next theorem deals with the case in which the index set J

has ca.rdinality greater than 1.

Theorem 3.5. Let Tk be a tableau generated by the S-algorithm in which

~1’J >2. (Refer to the diagram in the statement of Corollary 3.3.1.) Then

the symmetric positive semidefinite subniatrix has positive elements

on its main diagonal.

29
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L~ io~i: Recall that 14 , i _ s  a mat rix  of’ r ,rder ~~. By .Hjrailcr~r 3.2. 1 ~

A 1 ,  is r~ e-~-r ’c  and po sit ive  semi def inht ,c . ty part (s)  of l i e  same

Auroliary, rank = order - 1 = ~-l. law suppose that, more t han one

of’ ‘li e diagonal e1~ nen ts of is 0, say m11 = m22  = C;. Jsin~ Lemma 3.~~,

we have: 

::: : ‘ F
H = ~ 3 m73 . . .  m~~ )

0 m~~ . . .  in
k,!

Thisrnatrix must have rank less than or equal to £-2 , which contradicts th e

fact that rank = £- l .

The only remaining possibility is if one of the diagonal elements

of ~~~ Is zero, say to11
. Then

M TJ
=(: 

~:: I
Il-f ~~~~~~~~~~~ :1: m

22
, rn , 7 ,  . . .  , m

1~ 
are all positive . Also , rank - i-~~.

ion ‘s ~‘.e : u hm a - i d x

• ~
; _ _ (~~~

. . .

30
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has rank 2—1 and is tlics naza’ ~ng’.~lar. But cy Aci’c-hiary ,~.3. 1, e~M~~ =

Therefore ;
TM = 0T ‘‘Ian ” e ~~~l 1 ~T flut th i s  contradicts the

nonsingularity of -4 . We i -c f l c t i s s a  tba’c a . > 0, i.e. all of t h e  main

diagonal elements of are positive. I

We now state the mu i r2 result of this section.

Theorem 3.6. Af”s’i’ the jnLti~~,hizj tda s t ~e~~, alL . ;1c ~’oE sive pivots performed

by the h-algoritiin’ are I xl principal pivots. Thus na “exchange-pivots”

are necessary w .~~: tee P- ’ l l c o r L tn r  is applied to the IDE- .

Proof: Let w, be t,b t — driving vari able In r,he - ‘ur rent ;acleau . Either y7

(the negative basis dis ’ In;~cizhed var able which is toe complemen t of w~ ’

blocks she increase  of w~ by in’treasing to zero , or else s ome w

(~ c 
r ) blocks the Increase of w

~ 
b’r decreasinc to zero.

(I- se A: It , f , is the l b - s  k ing van asic , then he arlt’ m~ , c:.’ 4 / ~~~~~~ 

>

I = n ae , the in—pivot ~~ ,w~~ may b~ made.

~iase_ B: If w i,. (s ~ ) is the hiasi’ing v - r i a ~ le, and f’-l . ‘ica rsn

gu cran tees th ai m~~ s -  . This  permits tb- c alIt-pivot ‘w5 :.r~~’1 to  e r~ade

jons ~der f’~~ahby the 5DC-T’~ ‘1  ‘ ,~ e wh ere I t = 1. ,he s~’ble- -.u will

‘-- hen have the structur e described in ~~~~~~~~ I y r’’ 1.3.2. and it will cc’rr~ spcr

o the primal fens’ ’tLe ‘ai nt I- , . S in e = C , an ~ut— p vs~ i s  s1e~t r l j

impossible here . I ’ t r ,herunre , an ns - . ’ 1 ”a~~e — p I vat . ~w , w~ , t v~ ,y \ i s  c I sc

i rrDocsible , for it .  wo : id :n elll a m ew tcble’~u ‘c rr e c ~’s r d t  ne to the pr i r~c1.

~ 

~~~~~~~~~~~~~~ --. -~~--- 
-- -
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~~~~~~~

feasible point P~, which has a ~!~~
ier objnc’~ive :‘ui:- LU ‘jul is tha n 

~

‘ .

(The fact that  is a point- cf mini “ass non~ i n  I is ~ ai’’,rit ’:-~

the initialization step.) W~- conclude t~cc. jf ::J 1, t~ a ae~~ pivot to

be executed must be an in—pi~rot , and that y~ i i us~ be tIe ~~ “king

variable. I

I . We have shown that , apart n’ s-sn ti1e in i t ia l  i. - -”r Icc SCC 1 ’ , nO

pivots in the S-a -~orithm are accessary . However , by  narr .crh 3 fc- ~ ~u .’.-i

Proposition 3.1, the initialization can in fact ue acc~~opiimc~t ty  t~ro

I a 1 principal pivots (rather than by an exchange-pivot). ffnas , the

S-algorithm can find tu e solution ci’ the LDP by using I a 1 p n in c i e a l

pivots exclusively.

2 . Zoutendi:Ik ( [ 13] ,  pp. P-U-bA )  ex arn ln e - i  principal C:iv’T t- ina methods “ar

solving linear comrlernentarity problems of the for;-;

y 1

a P1 D - d  .

~he:e r e l a t i ons  - -c act i  -U -C the Iic r~- Lu:’ -~c-r f O h I L  lass  ll;r cc C te l - I :

ni  a I ze lid - F~j ’

sub,lect to y ~

Ieorn-ct ri , l i v ,  t h i s  ~‘ ro t - i.er. cr .’ be ~~I , ’ ,; Li i :  iiven ii c e~ of p 1 1 , 1 5

P - _ 1P1, b7. . . . , i l  in L’I’ and a pain ’ d — ‘ fhnd be p. nt  nics-~- s t

to d i n h e  convex cone , I O r ( Cr ’ i ‘ -~‘d ha 1 - . Tn - ‘ cx ’ a? ‘ iS S i t  L en , .

i i  ‘ arc h k p r nva-1  r ’f s u l  ts  wk I sh ’in~ roughi’,’ analogou s ‘i ’i cor ~~’r : ’ . 5

‘t i d  ‘ .~~~ - f  t,is p-’i p’-’r. “s also 
~,I ’~’ ’’~ n u m ’ e r  ~I 1 i ’~~t ’ i ’ t  C ‘ - ,

‘

ore ~‘l ’ re’:: C ’  s’s 11/ ’ ’ -: ‘~~~

7) - i

~~~~~~~ ~~~~~~~
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3. An algorithm for finding the point of a finite cone (with given

generators) nearest to a given point has been published by Wilhelmsen [10].

In a footnote, Wilhelmsen n’em ;ar’ks that th~ algorithm can easily be modified

to apply to convex poiytopes aol then it becomes identical to that of

Wolfe [11,12].

c. Geometric interpretation . of the tab l s-’~~~ -1 1 ements

The following propositions provide a b s c net r sC  in terpretation of

the elements in the successive tableaux generated ‘by she S-algorithm.

They are reform-slations of Propositions 1-a of Wolfe [ii].

Assume that the current tableau is given i-y :

w w u 1m1- L J

T

~m~l 
Mm~1. 

_M
J f l  Mrn~l,m+l

W~~ A 1 1  ~
‘ J . n,~ l l’

~ J J ,m -rl

As before, I U Irn -~-1] is the current set- of indices of the basic dual

variables, and 2 is the current set of indices of’ the basic primal

variables.

Proposition 3.7. The eler ents of the vector M , are he coordinates
— 

~ ,m’-l

of the current. fea s ib l e  p i n t  x in the se - .~ = 1P 1 :j ~ Ii .

~ 

---- -- - --~~~~ -.. -,~~ ---_ -- ‘  
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s’nc , - - t :  i”€ Inive X — ~~ a’Lare

I W
i e

~ H
”

In the Labieci.: T
k 

cor~-c:eo-~d Lr l~ Q .‘~~~ l , OW ( . ’ 5~ W~ 1 -000h i ‘1. 5 0 ,

by trie d u p T i ’ c a~~e So i:”l J - - t-percy a,.’ ‘ i c t’iU ~~~’ , - t n - - . t t l  - ‘‘  of lie - c C iC

I -n ’ ~‘s w 1 gi v= ’-  by “
~~ 

ra c e

d
i,, 1 0

S 

= P1 1)
‘1”‘2

Cs,’ feas i h7) iI’v. Ely C’c:rc-liuu-’,’ 1.3.1 ,

m
T

= e “I , = I

1 - - 1

Csmark . Af t e r  c - c-nh  out —p ivot is c ar f a r m  -a  a ’  O,~~-i ’ , 4 ~ i a ~not — c aiphc-nel. ’

t ’Lhlecu in the sense t :,ct  w’,y~ > 0 r on  r m ~- E I. Is- such a

tableau, the V iC l ISS of all primal bcci,:- vari—~L I-ss a .  (~ -- J )

m~u~~t be modi1’ie~i ‘cc be a . nt , wi ere - c  .al’ :’. al . V - I t c h  ‘to

cIni’ii ng a- ’ r t w, - now nc-n ’~an i c  ) wct s’ I t  1 1 ‘.he pt ’s  : tuu: -’ at-i - a

ar i  q .  - 

.c’1_~ 
I” ’tli anz,ure , the n a r ,b a z i c  4 1 r n v ~~’Q ~~~~~~~ a, ’

assi gned a posi’.~s’e ~?c4,1 UlS “ ~ t t ,!’, P “non— ~ t J ’ p I E  ‘ . - , .  S - -  
‘ i € ’au .

S. - - --- ~~~~~~ _ __,___ _ _ i__ _ _ _ __
_.__ _ _ _ _ _ _ _
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Proposition 3.8.

~i) In a complementary tableau, the element M 1 + 1  gives the current

value of 
~m*l’ 

which is equal to w~ P P w  XrX (where X = P~z is the

current primal feasible point ~~.

(.21 In a non-complementary tableau, the following identity holds:

-p
XTX = W TP~ P W = M  i’ 2M ~- M

m*l,mfl t,rn+l tt

where ~ ‘ is the value at which the increase of the driving variable w,~,

t ‘S i~ , was blocked; M, , ÷ 1 is the component of the vector

corresponding to the variable and Mtt 
is the corresponding diagonal

entry of the matrix M1 -
~P R

Proof: These results may be readily demonstrated using the approach of

van de Panne and Whinston [8], who adjoin a row representing the objective

function to the Kuhn-Tucker tableau and then perform a principal trans-

formation on the au~~iented tableau. Alternatively, C-lie proposition may

be proven directly , us in,- Corollary 3.3.1. I

Proposition 3.9. ri a complementary tableau, the value of the element

M. (i E t~ ) in P~X - X 5X , where X = Pw is the current primal
1,m~l 1

feasible point .

°roof• Consider the i n ’ E t,ial tableau T° sho~m in the proof of Coro11a~~’

v .3.1. Perform a block pivot on the submatrix

~~~~~~~~~~~~~~~~ 

:]
~~~

— -
~~~~~~~~ ~~~~~~~~~~~~ :~
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A straightfoi~iar’i co tcutation SIIc ’ W t ;  t l ,a~. in  t ’i t ieas

m+t “ ‘  1 
— e 

~~~~~

:-~ence the m b  component sat thn , ve-:’tor i t  jus t

— M- i ,r ,C i I - -: . st ’- i_ - 
! f ” ~~L t n l - t

= — X
1
”l

by Propositions ‘- .7 a nt  ~.8.

-2c- r- ’~
’i 1’~ry • is 1. Itt a compte:rc’it ~ry tableau, th~ ;Lsci,uac - ,‘ai - - :f th e

cia-men’ A , is imes the distance of ~~. t’rom I I t ’ s  I
1,mt l  - - 

- -

P~~I) ~ l :~~T y ~~~K ) .  if P. lies or, t h e  r:e~~r s i l e  of b (~1), 
- t i c

element P . Wil l  he a r, -? ’a t l ’Te n~nc,b s- r~ hence  I, - is - are  W~: t -  Re

‘he s Ego at’ the - - is a-an-c e to be- segative.

Proof: f,et hen,:’:e the pro,jenc:cr of P. onto HIll - , i .e .  the  point

of H~ I< ’ ns’ireat ‘a I’ .. Si,:,ce X is normal to iI,X~ . - —I = , ‘. f c  r• 1

T ~‘ T
scc,e s~ alc.r ,~

. --rem l l ti p l,v i n g  by X 0 y io ’Lds ‘1 t’ - X P. =

Itch; s’” :e ‘
~ 

H X ) , X Y  = X P. - h ence we have :

TTX - x’
~p.

- — 
1

-i -- _—  - 
‘- - -

x x  H

‘ -V ‘-he di:t-an’a- of P. from ‘- (X( at- :
I-

— - l , I’l~j = I ~i ~l x ll
- en cc

i I- <HH i~- - ~1 ll I ~I I < I  LI  x
’ L

x = H1-< - I H, ,~ , ,

n ’~’ Proposi’ -cc 
‘

- .

7)’

T

~

1TTJ

~ 

-
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“ 
- C

~~ ‘~-i ” ’ ~. En n r — J  ‘-_ ‘ i i~~~: i , :t~~1 L

= — II x I i  l!~ — 1’. . I1

Proposition 3.1C. Le~ 0 = i P . :j  C a ) .  ~‘af”:ne ftc paIn ’;  ~~~. to be th.c

projection of the  potrc t P. onto the u,fft ~-e 1 u~i I~ tI , 
‘1 0 , : = Qu. e ci  ~) ,

where i ‘S = ~\ 1r F 1 ’
~. then :

c~~) For  i ‘S ‘[
~~ , the i b~ row cf the statnU x — -u u, i, ’,’-cs “or ccctsl ~nates
- - ‘--P.

u of -the point A . wi th respe-: to the  r e t  of nairs t t .- . In, a’ her  won-dc:

r -— ‘a -- ] . = U and ‘1, = -i ia

t2) The entry ii. . (~ ~ I~~ or the ic;a~ n di -ayonal  of ’ I-i . equals

the square of the distance of’ P . fr -s. A (  . 

- - -

Proof:

li~ The prot Tin of prate ‘s - onto ~~~ 
-

min im ize ll~. — s’ .t e o - . t-o eTu 1. ,Ir cC-op by -‘aYe lie] -

t~ecessarIf and s u f f i c i e n t  c o n d i t i on s  for a soIs ’; i on “a  ‘i;~~s pr ”nl e ’.c - r- ; :

T,Q -Ic - e~ ‘ -

‘p
5,’ ” : — 1

- mp],(:-a~ rir: the nota’- i-s n of l emma 3.i co-si los’ ci]’:’’: ~ . .1. ~e have

-l
u 

= =

eT o 
- 

i °.., 

~‘ij  
i

Va 

--~~~~~ - --‘-~~~~‘~~~~~~~ __ : ,_~~~~~~~~~~~~~ ,__ ~~~~~~~~~~~~ __ _ _



hen - ’e  u = I-C ;,
L p , ‘- A A , ~~~ 

- .  
- ~-~~‘s , - r ,  La ‘-c i  ulsa br

- 1 - ‘
~ I i  I ,‘ ,‘;rl

shown that-

‘.1
“ ‘AT at 

- - 
-s. 

- 
, , t i’!

I-he ith row of thIs maui-I x is ie’;r i I i  I u~c ;  teal Co U ’ 
. tn-i , t o ’

W . Qu yields bc- praj’s:t Lt , of P. os-~o

(2) Using Lemma V~~~~~ and ‘ or o i l Cr ,i- ~~ .1, we obtain:

A = - R
I
QSI r tO

T
R - T ’r ’/ dat - ~ -I~ ~;

‘R ~ ~~~~
‘ ~~~~~~~

P. ‘~~~ “ ‘  — - -  ‘

me ci ,i) diagonal element of this m a t ri x  radaces  to

A. .  = P~FP . - Y -I~U - t-u + W ~ = - ‘
~

‘
~~~~

‘1

~~~~~~ • - 
‘)  

= IH -

I

La. Ecj uivalerce of the aJ, t o r i t b m s

To show that the P—algoritti n; and 1-lolfe ’ s t~ n- algorithu 1--cue r- se

the same f-sac -lI le points . we t-;e ’I to  -Ia ’r ’antt ste ;htit ti ’- n - rn- - ,

steps of the tu-to mc~ torts, ach i eve iden ’ ical re:’c1 ‘s.

;tsrwne c ,-:t , a’ s- -rc a Yer’.Lion of ‘- to I — ’cf ~~o r i ’ ,ton , a ba si n

complementary tableau ,1,k has been dJc  (r e d , corr ~~t o . t : l i  0cc -: a

1’feasible c hut not up ’ ma] - polo’, I-I ” . cu-~h a pch n ’ is ‘Ier ol o~ 
‘.,c-i f”

as a poin t of minin’: -r re - rn in the ‘arv c-x hull f- , i ,~ oi ’ a - e n ” a I r  c ‘rr - ‘, 



Suppose t!:’~’ I a - c  , ‘ , t ] e - t. h’s .1,0 fl- , ,  1’ ‘v, ’ t~~i ,~ s ’. : ’ -~ - .

‘RI 
~~~ ~~

_ !‘ J I

~ I ~1 ii 
~~

, 

- -

~m~ l 
I i 

~~ 
~~ilJ~~~~~~n i  -

~~~~~~~~~ ~l 1

ws 
~~~~ I

, ;  _ , ,  - ‘ 7

~1 ‘- — - ‘ ‘-.

w~ 
- 

A 

- -  ,,, 1L L:t~~~ ,±~~_ _

where I = (t) U I  L- i f l , d)  1’,. U - :n l~~, arid .3 = ii i ) U t .  Len q

denote the constant column.

1~ e feasible rcir,C - ,- ,
‘ a’crs’-c -:panf’ rc - to c h ,s  - -bloc -c b-cs

barycentri c ~~~~~~~~~~~~ C ar’~~~w A  A c-tat , r- ’;r uct “a to: set of
-R “ 

-

points P. In - olfU ‘ S t a n ~ . 1  r1 5 .s ;- ~~ I e sr ree l  -:s-, t~a 1 ~- 
- Ic COt :ipCSCf

-of  the points P -srd ft , : -
~

Without, 1 onr c i’ c’-:t- - r- I”t~ “cc ru’s tan use- h a t  eii ’~ n es t  nc,cstiVe

basic dual vari’tt-le is v . ‘,‘,‘Fi i r t, Ia’.: ;ho yr Tic ~~~5 , 1  K ‘I- . -h e n c e  the

S— - 1lgor ithni nicer rca r- ’ ~c~ ’c ’ “ C  t h e  c;,~’r-t,~’- ic—u n-~ 1I c-c b’~i:tc c-pc l esS.
-- A HI

By ‘ropccitlor~ ~~~ ‘: 
1 

~‘L
<
k 

— ‘l ’ I j , ~~ F~~ll
K 

K 1 ~ 
c’ , 11-i I ’reoa’ cn

P.1 of 1-m iCe [11]. X ic toe so].st -n -ci’ ftc LII l~ if and onl y I C ~~ - > PHI;

s’ ep 1 of Wolfe ’s niet ,hod dcl orminas ‘-:1 -r b 5-:n tat condi tt  sn  Is  sa t i s f i e d .

[‘bus , in thin cane “-i i ~ -a’ rn I : f l t  ft ’s it’ - ) - ” ‘pc’~r ,t  ‘I - c-tao ] H be t ’-c- ar: d no’; —

opt imal by I- niCe ’s tie ’ i tch .

2 ) ’
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In this situation , an attempt is made in the U-algorithm to

increase w.~ (the complement of the distinguished variable By

Lemma 3.14, it follows that Mtt 
> 0 (for if = 0, then M

t m+i 
= 0,

contradicting the assumption that Mt,m+~ 
< O”~

A pre1iminar~j ratio test is 
then performed to find an index s

such that

~~ {
~~ 

M
~ t

< O
~~~~

.

In the notation of the above tableau, we have

M M .s,m+1 
> 

j,ml-i for all j C J for which M.t < 0.
st jt

Since Ms m+i = V > 0 by the nondegeneracy assumption~ it follows that

, m+ 1
M 

K O .
st

The next step of the S-algorithm is to determine whether the basic

variable first blocking the increase of (i.e. attaining the value of

zero) is or w5
. To accomplish this, two ratios are compared, namely

M M
t,m-1-l < 0 and s,rn4-l < 0
Mtt “st

* See Appendix I.

L~o 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ - - ‘~~~~~~~~ - -

-
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-— 

~~~~-
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There are two c-aces to u u ~ - - ’d~ r:

Case A. Suppose tb-it

,mel 
- 

S , c - - ‘L

Then Yf blocks the in-s r-:’ese cit c ’ 1-a f or e  - ‘~or it is’ citani cously

w decreases to U -  t I t e  ~l - e ] , a c ’I t t s t t  a]’-~ls:-c r’-a’-ola’r ; bI c-c (~sro-- ties is.
5 -

favor of the disc. io~- u - - - h ccl. vm ’cis.:;le a ’ .  ) a ‘ S~~~l , 5  i o n , ‘ Ice i n — p i v o t .

‘I/f ,W~~ is executed co 1/CHId a re’s Cus tom - i  ~ ‘c ’:ni-o: :t , oscu - ‘- s ’ to a

k+1
point X which is pn i.’:al feac.Us]e. a,c ‘~:ci be sat--va , t-~~~: i-c precisely

the same pivot as is ‘pe:’i’ormed i t t  bt -c- o P -cC) the ‘cab] -“oat vac i -an’ of

Wolfe ’s LDP algoriah aci.

k~i - -In the tableai,~ T resct ’I’ i con f i ’ct:, ‘-he ~n-pJ - ian c- t ie oas i

primal variables are w~ , a’ and w , and tI:eir waS-ca-s sn-c given by:

r ~~~~~~~~~ ~~
c_i
t 

-

I-I ,, — ~~~~~~~~~~~~~~

, . ..1

L~ :L~~~~ I~t ii.

In Wolfe ’ -s te~~~i r ,o io  a’, ‘at- ru-c’: c ’r ~”t i , k 
it : -at’ :,r -- S h  of - a:

P,, , P , and ( P . : , i r-’ -~ ) .  ‘Pc t e a ’  ‘ c - - ; , c ib i ~ ix ’i l t ’ ~~ l;’i - a r - ’ e t ar c

coordinates ac , a’ , - c ]  ‘a n- ,- s th  r ’  :‘pt - - ‘ 0 ‘ ‘- , t se ’ o:~ t r ~’ S 

-~ - ~~~~~~~~~~~~~~~~~~~ -~~~~~~~ ‘ - - -



- —~~--- ~~~~ — ~—~=- -~~ 
_ _ _ _ _ _

F ’  - - - — —-~~~~~~~-~“'‘“r’- - - ---

To demonstrate the fact that the two algorithms generate the

k~ lsame point , it must be shown that X is identical to Y , the poiri ’

ki-l , k+-l
of smallest norm in A (Q ) , and furthermore that X C rel m t C(Q ) .

Since the ratio test indicated that an in-pivot was possible .

k-i-i T
the point X = Pw must be primal feasible. Hence w > 0 and e w =- 1;

in particular , w~ ÷ w~ ~ 
~j CJ ~~ = ~ Assuming nondegeneracy, all of the

k+l . . kfl k-i-I
barycentric coordinates of X are positive . Hence X C rel tn t  c(Q ) .

k+ 1
Mow, let Y be the point of smallest norm in A ( Q  ) .  Y can be

determined by solving the problem:

2 . T k÷l
minimize U Q U I I  subject to e u = 1, where Q, Q

/“ -s ’i tuting the point 0 for the point P. in the proof of Proposition 3.10 ,

we find that the barycentric coordinates of Y with respect to the set

Ic’-]. are given by:

u = MJJQ
T
P. + MJ m fl  = Mj,m+1

Tue the vector Mj,m+i represents the current values of the basic variables

V
t

V
S

w
J

in Tableau T~~
1, since J = ( t )  U t s )  U J .  In other words,

the vector of barycentric coordinates of the point X’~
’1 with respect

k-~-lto the se~ of points  Q

142
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Since ( S  ~~ sI ’fln -i)/ - - t I e . - :5 S et ,  :. - a c it . ’ in  J~

- - - . 
I, ,, ),

wI], ]. have a uric nut: S ‘5 , - ’ : , ’ t O  c -c - :- r - e : ,’ e r - T  “, t i a ’ ’ . a’ ‘ S T  - - - - ‘~
k-i , ,

:3ecause X and Y Fi ”V e I L O  i L I i €  S I .  50 ’ f , (’ e~~~ - ’’ n a t .-; , n’a”.c-iy

Mj ,m i  u. they ussct be ~dan’ I S a ) . l ease ft’~ t i l t ’: 1 :1

after an in—pivot  ot the b — .t t~ ur ta h’m is .i r t dsa , ]  - L -~ 1 r ’t uS it  1 ’  - m isc nor m

- k i- l  ] .
in A (,Q ~, arid fu r t H ermore , ‘H 

- E rd s- n : , -atQ 
- - -

tore B. Suppose ‘ th e  r 1, 10  ‘ ‘:c~~t b - -H -ca r e s  b i t t

~
‘-l~ , ta t l  

-

Then, w~ blocks the increase of w~ (i.e. 1:ctreaaet: re- C before

increases to 0. In this case , the U_a]c~ctrith::, ar:’o:’r-:

the out—pivot (w 5 .y , ’I hi  the t - c b l e -atn ‘1’ . As a resu S . a ,:~~cc - - -1 ’ 1

*
is obtained which sic denote as ‘2 -,t o  aa::i~I c,, - r c f -cs i  at: 1-itti’ : C -

coratid-ored in Care A ) .  t s r  :t:c’ purpose of - ho D r - o t t  . 
- t i c  i’ti-; ’i ~~t: ps-r 1 ico

of the tableau T Ic: given HI.

w~~ = 1

L~~::iL± i: *:i
“St i Ot,U T is “r. or- :a”-pte-’-a: ’ ’ r - -; ’ i l l  I - c  a t - s~, ‘1 : 5 ~~~ d r \ ~~ng van - -l ie

al’;Ir iougli n o n h a s l r : , -c -cr a p o s h  I’d v’t lu’’ h : :, h , e ‘.5.1CC ‘t t  a ’t , i  ‘1~ st s

increase w-as blocked by c-’ . ‘b’ e- - Thie of s 
~~~ d e t e r m i n e d  ‘,‘ t h e  r’,c I o

tes ’ to ‘be:

1,3

-.



— m~~~~~~~~~~~-~~~~~~~~~~~~~~~~~” - - -~~~~ -s, ’ -‘ ---‘ — -.

( M )

Since wt has the value ~ in tableau T , the values of the basic

primal variables w_ must be adjusted accordin gly:
J

I M M
w = I M - - -~~~M t b + M  - 

S,S1+L M

~ L 5t ss 
~sJ ~ , m+l M

55 ~~

M
s,tn+l M + M
M5t Jt .,l,m+l

Let Q = U (P~ :~ c-I .~}, and 1e X~
’ be the pri ma l feasible point

corres)onding to the new tableau T . Then the barycentric coordinates

*
of X with respect to the set Q are given by

[V t

1 w
L~~

where has the value 5- > 0 specified above. SInce X is feasible,

we must have

wt
> 0

J

and w +~~~. _ - w . = 1 .
t j-~.l’ j

14 14
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To sorts- ar’ -‘c’ the rr , , con uaa -’ 1 ‘ , - :i’ W~’ :0 ‘‘a-~

Qk 
= [PJ  U I t’ .t j C ~~

‘( = o r l g i tv’ I c-oarai - -a ’ - :I’- ’- s. - l: f l?  tc’ t n ]ea . :

= origine.t 2cr-s ible point s’-:’l’ i’es’ -~ 1 ~t-~ to

Qk+l = L I P )  C)

= corral c-bt ’c i .ner i by n , , u i o i r I i r , ,~ the tInt ]-~ to U ” means

of an I c— s ty a t , ir~

Y = point of 5:tallOs C rat ‘-c: ~n abe ” 
‘ 

. A:: -baa: in as a: A , this

point ~~~i1d have been ~‘~nerate-’I by un in-’;i”-st 151 T
k 

had

the ratio t~~ t eermCtte-s such a i~ ca .

= U ( P a t j  ‘I

X = point generated by an o’ct--pivot~ ~w . a )  in Ta .

define 2 to ‘cc the s.oi:c~ Lea - c ’- C - ccl Ijie Si se :cc:- ent

° The p i n  — s cc 1 tc - 
- Wc lfe ’ s ~~~

-c a- cl n-I . To demon; t r a ’a that ta - -s 3— ~L,—:oc”it : i t r  d rive-s at - ,t,e- came t;chct .

it  c - : fu ice s  to chat’; that Z = ;“ . ‘h u i s , there sc, three fast- c to be

fJVCd :

‘fr ’i’ l

~i , ’ x

(2 ,- X xky

)~ Any movement from X eowmr :. Y o],cn~ 4 h c  line segment

will result in a point which i~c ex~ -~:’icr tc. C,’ 1 .

is.
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To prove that X can be expressed as a convex combination of

and Y, we must show that 0 < 7’. < 1 in the equation:

* kx = (1-~’.)x + 7’.Y

This equation can be rewritten in terms of the barycentri c coordinates

* kof the point s X , X , and Y with respect to the entire set

= 
~-t~ 

P , P ). Using fact s established earlier in this discussion
I ~

we have:

w~~~ 0
M

V - 
s,m+l

t M5,~

w 0
5

M
s m+i

J ‘ st Jt ~,m+l

0 0

M
0 - 

t , l

= (i-~~; M 
+ 

~~ M - 

Mt m+i
•Mst

s,m+l s,iu+l Mtt

Mt , m+l 
~~M M -

J,m+l J , m+i Mtt

Solving this vector equation for 7’., we obtain

M Mtt
Mt,tn+l st

146
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A is positiv e slns’ - - ~~ > 0, 
~

i
t rn+l 

t’~ U
5 ,  

‘ 0 c~n-t < 0

by hypothesis. i-C’t’citc -r s ,:-e, the c’- :t’:-;,” ‘~ HI the s~~ ic 1, , ’, ;‘ jnI~ :‘i t~~ t h a t

hence Mt m+iMrt, ~~~~~~~~~~ 
which imp l.ies t~’cct 1. We conc)u,le

that X = (‘ — c  X ~- 
~~~

- ‘ s it h  0 ‘-5 1, i . e . A can se cy c c - a - :~ aq as

a convex combinati c-a of ‘
~ ama ‘

. A :, so.  5,5 ~~~ X -~ C (U an-i

Q c Q
k+l it f c - H a a -; tha t X C

It remains to vo”~ fy fact (3). In the v~ctor e -:, ,catj un above ,

note that the value c--f’ the w , -coordinate a~ a ±‘ ancs-ion of 7’, is  given by:

M
‘‘t c--I- 1 - st ‘t rn-I- S ‘ 5 +

~
il

s 
= (lXM s m + i ÷ A

~~s.m+i 
- = 

~s.r:ft1 
-

If -~ = ~~, we have w = 0. For feasibility (i.e. X~ C(Q
k’
~~t ), we

- -~ ,.i;~ thet  w ‘
~~. Setting

- ,
U 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_)--

:mh ” ler that ~ ‘~~ T. Iii -;‘ther - :. -ic’H s , any inc ”-s ’i,’e in 1~, ~eyun, ‘she

value will resu],L I:- a~ irA’c’ac- ible ~oi rt.

To complet-e tha eauit’~t ; -tn-se c - c ao~ , it ui :1 Cc c- o’sr, t } ‘.t t-Ce

— crit ical  value A is in fact i H e n ti s a l ,  to th t  v a l u e  d ee- - rHne ;I

in Step 5 of Wolfe’ s S-PP algorithm. Thh cc’- c bc’ i ‘ ‘ - - t ’ ~ r ot l o :

(
---—-—“- -—-- w , -v .  > 0

S
-~

irs - .—-- - - - ‘ - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where w denotes the barycentric coor dinates of with respect to

P, and y denoten the barycentric coordinates of Y with respect to

P. But these coordinates are just:

0 0

Mt + i
0

tt
w =  and y =

M •M
M - 

t,m+l st
s,m+1 s,m+l Mtt

M M 
- 

- 

Mt m+1
•M
~~

i’,m+l i’,m+l Mtt

Thus,

= min([Ms m+l
(

Mt” m
~
1 M

~~
)

~~ ], mm 
[Mj,

~~l(M
t~~~~~

MJt)_l
:j € 

~
J)

By the ratio test,

M M .s, m-4- l > for all j  C J for which ~~. < 0.

st jt ,j t

Since Mtt /Mt,m+i 
< 0, ~t follows that

M
s m+l(

t)m
~
l st

) 

~ M
j m+i (t~~~~ 

~
t) for all such j

ence 1

= M5~~~~l(t ~
m

~
1 5t

)
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which is Ident :c-c- .l to t.he ~‘ c i  ti - :’tC ‘ , 1 t ,~e ~ - a ct hct ’i i :-,.r’ l -± i ’ . ha

conclude tl’tat Ic- lIs a- IA I C)€ S—c L: - u t , c : : u  ‘ i c c - c ‘ -,‘ - i l l ’ r ’ -s I.!’d - aiacr ~ I

generate inen t real, primt .1 i-ac’ts ib i ’c atjr:t I

Remark. The ot: ’~,s’ iffc ’’L 15:0 - - t a - ceo  the t a  c d - , :i-~~t . .- 1 1  -~~ , ts. the

fact that the S~ ah,foritFc m first serfocnc : a fea c-t ’c -j ,~ t~ ~, ‘:s L 1 rvi ie ’’

rY’io cest~ - ,~-ter,: in~ - - ,i- ~ l. - - : - - i i -  i c — i h ’ . -~ C as ‘cc: “~i:t--ci -s’s t ?Lc-- t h  Cc-

- ‘:-c -;-~’ u t c c . S~~ fni - :- - c r -ia ; - 5 - a c - c - ”  to the ~t- - at of’ a, T . u . .  ~~‘. ‘ ‘f  , ‘ - t .’-

I , - i tt c t ’  ‘-‘a s-a - a o i l ’; to a tn~ tn , r cy cl e , 1-iota that all ;,asl’~~s:;

- - : i- :r- ,te by ‘; ,.~- ‘C o’ - - i thm cors-ers.cn I to primal feaslbl s’ rncncts .

‘cc t n -os. v - . a-s t c-f Wcs l~ e - a LI I ’  aigorit’-cm , on the other hand,

~ 1r - - - ~-.- r:c. ~~~~~~~~~~ 1- c t , C5, CT t - ’±o sms t sect to -b’ t,r rr sine  a-ccetner

‘ ac - o i  -
‘ Y cfr c ”ns.n’c ’ rc to tr,e new tableau is f’e c c ah l e  (i .e.,  lies

r c( ~ ) If Ic ~t~r~~~rt ~~~ ~ rc: a ne~ r mi cycle

- It i.; r ‘sctL -le a’ the in- c’act to c;enera4c-e c. tableau corres—

- ~, ~o a Su i t  Y - - ‘ a . is i a t - ~ - sth- :, Cm his ‘case, it i. linen

m esa-s -ca r -, t: ‘:‘uie;’ o cc: .n- a :0 - I .e (~ tc+cc -
~~ 

‘ ,,t~ :b i :;vc1’,’c:c- ~ al ,ei ,cSatircc ,’

- / -, 1’. ~, --. c ‘- ., t~~’n ~ ti ~ ni  c c  i i””  a1 Y +

;
~~c ~- . “rc sho’,-m , ‘-ci i ;  m in o r  —‘cycie src’h:, -~,iee 

t ’ -e ‘Srt e rest.) I as Ice: the

o~ t— c- ~V O C  ste:) at’ the 2— il rs is’. l t ’ i jc.  : ,1ft !~j~~~ .b~C t- ’.-.j  ma c ha - -is

- 

- 

- t i t ’ C i ’ , - - - - -’, : ,  s aC- a ’ t n  ‘ . I d .  ‘ ,‘ t j - ; ~ c i s c : - - - c - - s .  the

- ‘ 1 : -c l : ’- : .  ‘ ‘ - f ’ j . r l - : c ’cl 1’ -s a : ’ i ; - ’ ac inh i  lete- ’.:l s- - :;~‘:L ~ 1’.:: ‘2 ‘ ‘ i thc, :,

arc- :..,,~~.11l coal .  T h - i ’~ poi nt is il. ”,, : - - c c ’ at€ :d b , ~~~ 
, - ‘l,y it. ’ the  we _ pnr i t }cms

to ‘A’c t f e ’ exancic ie: 
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Example.

Assume that we start from the feasible point R having barycentric

coordinates (9/13 , 14/13, 0). The corresponding tableau is:

w_5 
w14 y1 y2 1

149 -142 17 — 14 -142

-142 36 -9 —14 36

-17 9 1 -l 9

14 14 -l 1 14

S-algorithm Wolfe’s LDP algorithm I
Increase the driving variable w3. Without regard to feasibility,

Ratio test shows that w1 
blocks, perform the pivot

OUT-PIVOT (w 1,y 1) 
(y 3,w~)

w1 
w
3
=-1 w y~ 1 

— 

w14 y1 y
2 

y
3 

1

y1 13 17 - -  1 _ 9 1  y 14 0 21 -28 -142 0

y
3 

17 26 -1~- 1 -l~ w1 1 -2l 26 -9 -17 -21

-b -1’ 2 -1 w
2 

- 

~~ 28 -9 5 14 28

-l -1 1 0 T w
3 

142 -17 14 13 142

w
3 

has the value E = 9/1’!. This tableau corresponds to

Adjusting the values of the the infeasible point 0 with barycentric

variables w this tableau coordinates (—3/7 , 14/7 , 6/7).
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corre saonJs t o  chr ’ ~5 ~ S ‘ 5 c. c’ 
— 

21/~ ~ .

with ba1~ cc~n r c r  ,:~~. r ’~ c r:- t :,: (1— c R + — ,~o t - l c:’ t i e  ;‘a:,t 5~

- ‘
-i,. - . 1/1(1 . U ’ t  i t i r~’~t -“ - t ru e- - s c  - + t t  a,j SC:’: f C L  1,he i mu le. ’:

increase of w~. Ratio test I = ~~ - ‘ ~~~~~~ - :  SOS. n - i -C

shows that y. hI .ock : ,

IN-I’T-!-- ) T  L~”~~i’L, t’~ ~~~- “ c - Ii, ~
‘ ‘ , ,- ,

149 “ 1 9  i7 21 j r i  9~~~~~~~ J 2 l

I ~~ 21 b -II -15 ~ L~’ L 21. ~ -1 -1 -?

-‘1 ~ -1 11. r I _ Ia 11 1 -1 11

~ -l7 15 11 1 ~~ii 

~ 
j~’ ’ 1~ -l 1 

- _ _ _
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The preceding results may be summarized as follows:

Theorem ~.l.

(l~ When applied to the LDP, the S-algorithm of van de Panne and Whinston

and Wolfe’s LDP algorithm are equivalent in the sense that they

generate the same sequence of primal feasible points.

(2’I Furthermore, the successive tableaux generated by the two methods

are identical, except during certain iterationc in which Wolfe’s

algorithm produces a tableau corresponding to an infeasible point.

In such cases Wolfe ’ s method performs a minor cycle to restore

feasibility; this step achieves the same result as does the corres—

ponding minor cycle in the S-algorithm.

(3) Both the S-algorithm and the tableau variant of Wolfe’s method rely

exclusively on lxi principal pivots in solving the LDP. The same

principal pivots are executed in both methods , although possibly in

different order .

Remarks.

1, van de Pa ime and Whinston 19 1 showed that in the case of convex quadratic

programming, the S-algorithm generates the same sequence of primal feasible

points as does th€ “asymmetric” algorithm due to Dantzig ~,31 . Since the LDP

is a special case of the convex quadratic programming problem, Wolfe ’s LDP

algorithm is also equivalent (in the sense described above) to Dant-cig’s

method aph t i e -d  to such a problem.
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2. F rom the comc:ctat cnai  point - al v ie ’ : , tLe ~—a2 ’cc c-Ithn~ an’- the table

var iant of Wolfe ’ s algori th.nl ac ’~-’- 51’-;”; -c - : u J v ’ ., ] e c ~i , . Th-c “ — l u ~~II c ’cte colL crc.n”

sroci erty and the bIsymmeti’y of Lh ’~ tab 1.ciiu-c e- r: ,;nc ,t a-- :~ by tao I’ - —me t h ’~’i

imp ly that (m+i)2/2 stor~~e 1.oca~ ia a ac ’c c 1 r-:

It might aup -esir thot :~a r fc . ’c ; :Cn~: a m i n  ,r s-ía L~ ter  i~) Cr

Wolfe ’ s method (which involves calculating a , cc ’ae--sanr an t  determini rit ’

the new feasible point as a C-jrivex ,‘ccc.bir,’c,1 ioc: ’,~f to ,  ant i .  ils

additional comput-ational. eff”) r’t ‘b-.cynnu 1 
~‘a~ i- c- i  iic -~~: Ii: the f-a].pcritha’.

‘l’his is not the case. however, circe the Latter  ais”cc’ithsc performs the

equivalent computation of the ra tio  test and the ad ,i- ::- tc ,;ent in the values

of the basic vari ables after an out-pivot has taken place . 

~~~~~~~~~ _ _  ~~~~
, 
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Appendix I: O n de~ enei-acy

In order to guarantee that the S-algorithm will solve the LDP

in a finite number of pivot steps , it is not necessary to- make the non-

degeneracy assumption (i.e. the assumption that in every tableau, the

basic primal variables are all strictly posit ive).

To see this, suppose that the current tableau Tk has the

structure depicted in the first diagra-’ci of Section 1 / , Assume that the

current complementary solution is not optimal, and that y,~, is the most

negative basic dual variable (so that M
t m+i 

< O ’c . Now, contrary to

the nondegeneracy assumption, suppose that M m+l 0. (The other

basic primal variables comprising the vector M_ may be taken to
J,rn+l

be oo,,it ive . )

The ratio test of the S-algorithm will determine that

M Mt m+l - s m+l
4 

‘-., ~ = 0 .
tt st

Hence “Case B” obtains and an out-pivot must be executed on the element

M .  (M is positive by Theorem 3,5,l The resulting tableau T*, as

indicated in the discuss~ in of the preceding section, will have:

W 
s~ m+l~~4 = M

J J,m+l M 
~~

Hence , a zero-valued basic barycentric coordinate (basic primal variable)

in any tableau may be “removed” by making an out-pivot.
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If several basic barycentric c--”a : r ; i n’,tr , :  Ifl ‘1 u ’CLV€ ’ fl tab leau have

the value nero , it will be tlt’se:.;c:ary to ;,erf’nn- a :.~ t ’;€ t 1 ’ 5’. of c’ct—p ivctc .

Corollary 3.3.3 sets an upper bound on the number of sue-h pivots that

can be executed. Eventually, either of two cases must arise:

(1) The cardinality of J is 1 and the tableau has the nondegenerate

structure described in Corollary 3.3.1, or

(2) The cardinality of J is greater than 1, but the ratio test

indicates that an in—pivot should be performed. This , of course,

happens only if all of the basic barycentric coordinates are positive,

i.e. the tableau is nondegenerate.
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A,~pen d ix  II~ von h i l u C r i b I  1’. — n’ :: r - :et l ;

In this section, an algorithm due to von Hohenbalken E9] for

max imi :’ing certain pseudoconcave functions on polytopes is considered .

It will be shown that this algorithm, when specialized to the LDP, is

identical to Wolfe’s method.

In the following description of von Hohenbalken’ s method, the

notation employed in section 2 of this paper will be used. In addition,

certain maximication problems will be converted to equivalent minimization

problems for the sake of clarity.

Following the initial step, the algorithm continues with a

sequence of major cycles, each of which begins at Basic Step 1. Let

Q
k be the affinely independent subset of P at major cycle k, and

let be the minimizer of f(X) on C(Qk) ,  where belongs to

the relative interior of C(Qk). (Thus, Qk is a “corral” in Wolfe’s

terminology.) 

_ _ ,- ,- - _ - — — “.--- . - - “ - -- -. - - - -
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‘1

VON HOHENBAL KEN ’ S ALGORITHM SPECIALI IIATION TO THE LDP

Initial Step

Find an extreme point of the In the case of the LDP. without

feasible region. In general, this loss o. generality we may take this

is accomplished by solving a linear extreme point to be one having

program . Denote this extreme point minimum norm; it may be denoted by

as X~~
’1 

= X1 (the superscript P1. With this choice, the same

refers to the cycle nuriber). Go to starting point in selected as in

basic step 1. Wolfe’s LDP method. Set X1 = P~ .

Go to basic step 1.

Basic Step 1. In the case of the LDP, it is

Set = xk’~~. unnecessary to use linear programming

Use linear programming to to solve the minimization problem of
A

determine an extreme point X of this step, since the problem is just:

kT
the feasible region that solves: tam TX X

XiC(P)

min(i~f(X
k)TX:X is feasible) which is equivalent to:

kT
min X P.
P.E.P 1

Optitnality test: 
1

k T -- k This computation is equivalent to
(a) If 7f (X ) ~X-X ‘1 = 0,

k determining an extreme point P.
stop: X is optimal. -~

as that point on the near side of

(b~ If !f(X T
~X_X

k
7 < 0, the hyperplane H(Xk (Z :Xk Z X k

Xk)

go to Basic Step 2. having greatest distance from the

hyperplane. But this is precisely

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - ‘ - .  -~~~. - -  - ~~~~~
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VON HOHENBALKEN’S ALGORITHM SPEC LJt LL ’,ATI ON TO THE LDP

the  step t t ;~an in Step I of Wolfe ’ s

u ruEithc- -~ (see Wolfe - 11, pages 10 and

23j’~.

In the case of the LDP, X Is

just the extreme point P. which

kT
minimizes X P.. Hence the ex—

prencion in Basic Step 1(a) is

k
T 

k
T
k

equivalent to PX P . - 2X X =0.

The algorithm terr inates, therefore, -

T , T
if xk x~ = P .. In this case

3
k ,X is the optimal solution of the

LDP. Note that Wolfe’s method

employs the same optirnality test:

Theorem 2-1 (Wolfe [11]) states that

X is optimal for the LDP if

x
Tp . >x Tx for all j.

If f(X
k
)
T[X_X k] < 0 (i.e.

k
T 

k
T 

k
if X p 

~~ x , then X is

clearly not optimal and the method

continues.

5i~
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VON HOHENBALKEN ’ S ALGOR ITHM SPECIALIZATION TO THE LDP

Basic Step 2

There are two cases: When the method is applied to

(a) If f(X) < f(Xk), set the LDP . case (a) will never occur.

= Recall that the starting point P,~

Q
k+l 

= (X)  , was chosen to have minimum norm,
- T ‘1’and go to basic step 1. i.e. PA P,~ < PT?. for all 1.

i,~ I
Hence. X = P . and X1 =

(b~ If f(X) > f(Xk) ,  3

k 
A we must have:

auguinent Q by X

to form a new affinely f(X) = P~P. > ~~~~ = x~
Txl =

Independent subset (~ So case (b) clearly occurs here.
Go to basic step ~~. Now, let be the feasible point

available at the beginning of major

cycle k . It is clear that

f(X~ = ~~
T k < P~PA < P~P1, all I

A

Since X must be one of the points

P~, it follows that f(X) ?f(X
k ),

i.e. case (b) occurs here as well.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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VON HOH ENBALKEN ’ S ALGORITHM SPECIALIZATION TO THE LDP

Bas i c :;Lep 
‘~

Attempt to find a :; inimizer This is identical to step 2 of - -

Y of f(X) on the linear manifold Wolfe ’s LDP algorithm.

A(Q .

(a~ If such a point Y exists Alternative (b will never

it satisfies f ( Y~ < f(X~~. arise in the LDP

Go to basic step 14. because f (X) = X X will always

have a minimizer on the manifold
(b’
~ If  f does not have a

A(Q’.
minimize on A(Q~, find Cts

minimizer Y’ on A’ , where

A’ is the linear manifold

through X and parallel to

A ( Q )  f l A ( Q k
~~ .

Go to basic step 5.

Basic Step 14

The barycentric repre- In the case of the LDP, we have

sentation of Y on A~Q
’
~ is Q = [P1,P2, . . . , PJ, and thus

Y = Qw*, where the columns of Q. Y = Qw~~ P1w1+ P2w , + . . .  + P.w ..

are certain extreme po iotn  of the  Note that w
1 

> 0.

feasible region .

There are tv-a case:t:

(it

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _
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VON }iOHENBALKEN ’ S ALGORITHM SPECIALIZATION TO THE LDP

*(a )  If w~, > 0  fo r all I = 1,.. .,j, This is identical to step 2(C )

then Y belongs to the relative of Wolfe’s LD? algorithm (the

interior of C(Q) and minimi zes feasibility test).

f on C(Q).

k+lSet X = Y ,

Qk+l Q

and go to basic step 1.

(bt If w. < 0 for some i, i ~

then Y ~~
‘ rel m t  C(Q).

Go to basic step 5.

Basic Step 5

Intersect the boundary of In the case of the LDP, we

C(Q) with the line segment XkY. may write Z=P 1w1
+P

2w2
+~~~•+ 

p~~ r
j .

Let the intersection point be

Z = Q w.

The point Z satisfies This step is identical to

f(Z) < f(Xk) ,  and will have step 3 of Wolfe ’ s LDP algorithm,

> 0, all i, with > 0 and provided the stipulation is made

at least one = 0 for i ~ j. in von Hohenbalken’s method that

the vertices from only one point may be dropped from

Q that have w1 = 0, to get Q during basic step 5.

a reduced aff inely independent

set Q.
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VON HOHENBALKEN’S ALGORITHM $PECL,LfYATION TO THE LDP

There al-c two cases:

(a ) If C(Q)  is ‘te ro— dimensiona.l Assume that cese (a) occurs ,

(i.e. contains only a single i.e. C(Q) consists only of the

point , set Z , point -it . von Hohenbalken’s method
k+lQ = Q, will return to basic step 1 and

and go to basic ~teo 1. test point Z for optimality.

Wolfe’ s metho d, on the other hand ,

(b~ If c(Q~ has positive will first determine that Z is

dimension , set the point of smallest norm in

= Z, A (~~) (since ~ is a singleton

Q Q, th is is the only possibility ’
~,

go to basic step 5. and then return to step 1 for the

optimality test.

It is clear that the steps

taken by the two methods are

identical. ‘ihe same holds true if

case (b ) occurs .

The preceding observations may be summari~ e-J as ro i lows :

Proposition C .1. Suppose that von Hohenbalken’z algorithm is applied to

the LLD , with the following stipulatLons :

( 1)  The starting point is chosen to be a point of P if min imal  norm, and

(: :~ hanic step 5. onl;.- one point at a time may be delete -I from the set C. .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _____  -
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Then every step taken ~~ the a ’1 gerit~~:. ~s I ~o n t i a~~ ~~ the corresponding

step of Wolfe ’ s LDP method .

Remark. It follows that von Hc-hcnta1-~ei~’ ml~:- r ith;i generates the same

sequence of primal feasible points ‘~~~ does t~ e van de t anne-Whinston

method applied to the LDP. The extent to vhich this observation may be

generalized to quadratic programs of a rs re acieral nature is un~ er

investigation. ‘ 
-

( - 5
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